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Background

• This study uses AOA method for spectrum surveillance applications 
(e.g. CRC’s Spectrum Explorer).

• A wideband scanning device is needed since various signals may 
occupy a wide frequency band.

• Basic preliminary channel usage info usually includes multiple 
(channel#, SNR, AOA, AOA ISD) for each scan. Thus, a pre-
ssing (first-step) procedure (signal detection, type 
dentification, direction finding) is needed.
scans, the basic preliminary channel usage info is cessed by a (second-step) procedure to get the overall channel usage 
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Goal

• Based on the overall channel usage report (active channel#, 
EST_AOA, EST_SD) from each RX to various TXs, develop a set of 
simple algorithms (third-step procedure) to track mobile TXs
efficiently.

Approach

• Use two geodetic models (Spherical and WGS84) with two/three-RX 
(2R/3R) fixing to process the overall channel usage report data from 
each RX to various TXs.
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Spherical Model

• = (latitude, longitude). Angle A is the azimuth Az east of north 
(clockwise) which point B bears to point A.
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1. Given and , (4)=>S_R1R2_Spherical (=cR).
2. (3),(5)=>(A12,A21) (tri R1-R2-N).

(AR1,AR2)=(AOA1,AOA2)-(A12,A21).
|                       |                      |

(tri R1-R2-T1) (tri R1,2-N-T1) (tri R1-R2-N)

3. (2)=>AT1, (1)=>S_R1T1_Spherical.
4. Given S_R1T1_Spherical and AOA1, (4),(6)=>

5. Repeat for multiple AOA1/2 sets for multiple TXs.

6. Extend to 3R fixing by processing 2 RXs at a time.
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WGS84 Model
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• a (=6378.137 km): semimajor axis (equatorial radius) of earth; 
b: semiminor axis (polar radius) of earth; f (=1/298.257223563): flattening;     

: second eccentricity;                            : eccentricity of the ellipsoid.
• : ratio for the length of a radian of latitude/longitude along a 

meridian/parallel on the sphere to that on the ellipsoid.

1. Given          and          , (7) and (8)=>(S_R1R2_WGS84), 
),( 11 λφ ),( 22 λφ
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2R Fixing
• The 2R Fixing has been mentioned in both geodetic models. In 

general, for both models, the procedure is as follows:
1. Given and for R1 and R2, find S_R1R2_Spherical.
2. Find (A12, A21). (AR1,AR2)=(AOA1,AOA2)-(A12,A21).
3. Use (2) to find AT1. Use (1) to find S_R1T1_Spherical, (15)=> S_R1T1_WGS84

if for WGS84 model. 
4. Given S_R1T1_Spherical/WGS84 and AOA1, find
5. Repeat for multiple AOA1/2 sets for multiple TXs.

),( 11 λφ ),( 22 λφ

).,( 33 λφ
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3R Fixing

where                                                       is the AOA SD
from RX J (=K,L,M). By Menelaus’ Theorem, 

then

• K, L and M represent the RXs and A, B, C the corresponding corners of a 
triangle. The best estimated location of the TX is at V.

• For various mobile TXs, we can repeat the 2R fixing procedure for 
e for multiple AOA1/2/3 sets for the 3R fixing to find the sets of (A, B, 
en, (16), (17) and (18) can be used to find the Vs to track those mobile TXs. 
e mobile TXs. 
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Confidence Ellipse (CE)

: AOA from RX J.
: X, Y rotating angle relative to the coordinates x, y.

• The CE with probability P is the probability that the V of a mobile TX will lie 
within the area bounded by an elliptical contour with semimajor axis r and 
semiminor axis s. 

• and the CE vary as the AOA varies. The CE can be applied to 
both the 2R and 3R fixings. 
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Simulated Results

• 3 RXs located at Mont Royal (R1) and St-Remi (R2) in Quebec, 
Canada and a dummy location (R3) were simulated with            set
d with             set
als to                                                          respectively.
vely.
with 25-dB EST_SNR were simulated. AOAi_Tj represents 
azimuth from RX i to TX j.

5-dB SNR, AOA SD ~ 2 dgs.
25-dB SNR, |N(AOA_true, 1&2-dg SD)| and |N(0, 1&2-dg SD)| were 
1&2-dg SD)| were used as the AOA and AOA SD models, 

&2-dg SD)| were used as the AOA and AOA SD models, respectively, 

),( λφ
),39.72,50.45( oo− ),33.72,28.45( oo− ),68.72,43.45( oo−
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• For the 2R/3R fixing, (R1, R2)/(R1, R2, R3) and (AOA1, AOA2)/ 
(AOA1, AOA2, AOA3) were used. 

• 20 snapshots of simulated data were generated for each case using the 
sets of the AOAi_Tj with its AOA SD.

• The following values were calculated among the 20 snapshots:
(r_max, s_max): maximum of rs, ss, and its CE. 
Vavg_Tj: averaged V_Tjs. 
True_Tj: The true location of Tj (calculated by using zero AOA SDs).
Rec_AOAi_Tj: recalculated AOAi_Tj (azimuth from Ri to Vavg_Tj).
Er_AOAi_Tj: AOAi_Tj error (=Rec_AOAi_Tj–AOAi_Tj_true). 
RMSD_Tj: Root-mean-square distance (between V_Tjs and True_Tj). 
AREACE_Tj: CE area.

• Both the Spherical and WGS84 models were used. For the cases of 
mobile TXs, Er_AOAi_Tj(1,2), True_Tj(1,2), Vavg_Tj(1,2), (r_max, 
s_max)_Tj(1,2), RMSD_Tj(1,2) and AREACE_Tj(1,2) were 
calculated.
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• Simulated Test1 Scenario: Motionless T1 for a 2R fixing, (AOA1, AOA2)=                  
with (I): 1-dg AOA SD and P=50% CE; (II): 1-dg AOA SD and 

P=99% CE; (III): 2-dg AOA SD and P=99% CE.
)315,225( oo
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• Simulated Test2 Scenario: Mobile T1&T2 for a 2R fixing with 2-dg AOA SD 
and P=99% CE. AOA1,2_T1(1,2)=
AOA1,2_T2(1,2)=

),318,315(),228,225( oooo

).328,325(),238,235( oooo
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• Simulated Test3 Scenario: Mobile T1&T2 for a 3R fixing with 2-dg AOA SD 
and P=99% CE. 
AOA1,2,3_T1(1,2) =
AOA1,2,3_T2(1,2) =

),93,90(),318,315(),228,225( oooooo

).83,80(),328,325(),238,235( oooooo
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 Spherical W GS84 
Simulated Test1 (I): AOA1=225, AOA2=315 dgs, 1-dg SD, 50% conf. 
Er_AOA1/2_T1(dg) -0.21141/0.24453 -0.21142/0.24459 
True_T1(la_dg,lo_dg) (45.4162, -72.5244) (45.4162, -72.5238) 
Vavg_T1(la_dg,lo_dg) (45.4164, -72.5231) (45.4165, -72.5226) 
(r_max, s_max)_T1(km) (0.28111, 0.23656) (0.28108, 0.23649) 
RM SD_T1(km) 0.38072 0.38077 
AREACE_T1 (km^2) 0.20891 0.20883 
Simulated Test1 (II): AOA1=225, AOA2=315 dgs, 1-dg SD, 99% conf. 
Er_AOA1/2_T1(dg) -0.21141/ 0.24453 -0.21142/0.24459 
True_T1(la_dg,lo_dg) (45.4162, -72.5244) (45.4162, -72.5238) 
Vavg_T1(la_dg,lo_dg) (45.4164, -72.5231) (45.4165, -72.5226) 
(r_max, s_max)_T1(km) (0.72459, 0.60974) (0.72451, 0.60957) 
RM SD_T1(km) 0.38072 0.38077 
AREACE_T1 (km^2) 1.388 1.3874 
Simulated Test1 (III): AOA1=225, AOA2=315 dgs, 2-dg SD, 99% conf. 
Er_AOA1/2_T1(dg) -0.43712/0.49647 -0.43715/0.49652 
True_T1(la_dg,lo_dg) (45.4162, -72.5244) (45.4162, -72.5238) 
Vavg_T1(la_dg,lo_dg) (45.4166, -72.5218) (45.4167, -72.5212) 
(r_max, s_max)_T1(km) (1.4536, 1.2345) (1.4535, 1.2342) 
RM SD_T1(km) 0.76158 0.76167 
AREACE_T1 (km^2) 5.6374 5.6359 

 



ISART2004, Ming-Wang Tu, 18

Simulated Test2: AO A1_T1(1,2)=225,228, AO A2_T1(1,2)=315,318,  
AO A1_T2(1,2)=235,238, AO A2_T2(1,2)=325,328 dgs, 2-dg SD , 99%  conf. 
Er_AO A1_T1(1,2)(dg) 0.32178, -0.047916 0.32177, -0.047892 
Er_AO A2_T1(1,2)(dg) -0.80228, -0.040003 -0.80221, -0.039927 
True_T1(1)(la_dg,lo_dg) (45.4162, -72.5244) (45.4162, -72.5238) 
True_T1(2)(la_dg,lo_dg) (45.4277, -72.5205) (45.4278, -72.5199) 
Vavg_T1(1)(la_dg,lo_dg)      
Vavg_T1(2)(la_dg,lo_dg) 

(45.4148, -72.5277) 
(45.4275, -72.5205) 

(45.4149, -72.5272) 
(45.4276, -72.52) 

(r_m ax, s_m ax)_T1(1)(km)   
(r_m ax, s_m ax)_T1(2)(km)  

(1.3051, 1.1711) 
(1.282, 1.1075) 

(1.3053, 1.1708) 
(1.2821, 1.1069) 

RM SD _T1(1,2)(km) 0.72998/ 0.94992 0.73003/ 0.72995 
AREACE_T1(1,2) (km^2) 4.8017/ 4.4606 4.801/ 4.4584 
Er_AO A1_T2(1,2)(dg) 0.41135, -0.47495 0.41132, -0.47493 
Er_AO A2_T2(1,2)(dg) -0.48043, -0.29088 -0.48038, -0.29083 
True_T2(1)(la_dg,lo_dg) (45.4531, -72.5048) (45.4531, -72.5043) 
True_T2(2)(la_dg,lo_dg) (45.463, -72.4955) (45.4631, -72.4951) 
Vavg_T2(1)(la_dg,lo_dg)  
Vavg_T2(2)(la_dg,lo_dg) 

(45.4526, -72.5074) 
(45.4618, -72.4963) 

(45.4527, -72.5069) 
(45.4619, -72.4958) 

(r_m ax, s_m ax)_T2(1)(km)  
(r_m ax, s_m ax)_T2(2)(km) 

(1.4376, 1.1846) 
(1.3839, 1.1053) 

(1.4377, 1.1837) 
(1.3836, 1.1038) 

RM SD _T2(1,2)(km) 0.87361/ 0.78357 0.87379/ 0.87371 
AREACE_T2(1,2) (km^2) 5.3501/ 4.8054 5.3463/ 4.798 
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S im u la te d  T e s t3 : A O A 1 _ T 1 (1 ,2 )= 2 2 5 ,2 2 8 , A O A 2 _ T 1 (1 ,2 )= 3 1 5 ,3 1 8 ,  
A O A 3 _ T 1 (1 ,2 )= 9 0 ,9 3 , A O A 1 _ T 2 (1 ,2 )= 2 3 5 ,2 3 8 , A O A 2 _ T 2 (1 ,2 )= 3 2 5 ,3 2 8 ,  
A O A 3 _ T 2 (1 ,2 )= 8 0 ,8 3  d g s ,  2 -d g  S D , 9 9 %  c o n f.  
E r_ A O A 1 _ T 1 (1 ,2 )(d g ) 2 .4 7 3 2 , 0 .6 8 2 1 9 2 .4 5 9 , 0 .6 6 1 5  
E r_ A O A 2 _ T 1 (1 ,2 )(d g ) 4 .4 9 9 9 , 0 .3 4 1 2 7  4 .4 7 4 3 , 0 .3 2 2 5  
E r_ A O A 3 _ T 1 (1 ,2 )(d g ) 2 .6 7 6 3 , 0 .1 7 6 6 2  2 .6 6 3 9 , 0 .1 5 8 4 9  
T ru e _ T 1 (1 )(la _ d g ,lo _ d g ) (4 5 .4 2 8 9 , -7 2 .5 1 5 8 ) (4 5 .4 2 8 8 , -7 2 .5 1 5 3 ) 
T ru e _ T 1 (2 )(la _ d g ,lo _ d g ) (4 5 .4 2 9 1 , -7 2 .5 1 9 4 ) (4 5 .4 2 9 1 , -7 2 .5 1 8 9 ) 
V a v g _ T 1 (1 )(la _ d g ,lo _ d g )   
V a v g _ T 1 (2 )(la _ d g ,lo _ d g ) 

(4 5 .4 3 0 3 , -7 2 .5 1 4 1 ) 
(4 5 .4 2 9 5 , -7 2 .5 2 0 6 ) 

(4 5 .4 3 0 3 , -7 2 .5 1 3 7 ) 
(4 5 .4 2 9 5 , -7 2 .5 2 0 1 ) 

(r _ m a x , s _ m a x )_ T 1 (1 )(k m )  
(r _ m a x , s _ m a x )_ T 1 (2 )(k m ) 

(1 .6 1 5 9 , 0 .6 1 5 8 2 ) 
(1 .2 4 2 , 0 .6 7 5 9 4 ) 

(1 .6 1 5 4 , 0 .6 1 7 1 6 ) 
(1 .2 4 1 2 , 0 .6 7 8 4 5 ) 

R M S D _ T 1 (1 ,2 )(k m ) 1 .4 0 9 4 / 0 .6 8 3 4 8  0 .8 7 8 2 3 / 0 .8 7 8 2 2  
A R E A C E _ T 1 (1 ,2 ) (k m ^ 2 ) 3 .1 2 6 2 / 2 .6 3 7 5  3 .1 3 2 / 2 .6 4 5 5  
E r_ A O A 1 _ T 2 (1 ,2 )(d g ) 0 .8 1 0 1 2 , -1 .6 5 7  0 .8 1 6 1 1 , -1 .6 4 4 3  
E r_ A O A 2 _ T 2 (1 ,2 )(d g ) 1 .0 8 9 7 , -2 .1 4 9 9  1 .1 0 0 6 , -2 .1 4 0 6  
E r_ A O A 3 _ T 2 (1 ,2 )(d g ) 0 .8 9 4 9 4 , -2 .2 8 1 5  0 .9 0 8 3 9 , -2 .2 6 9 4  
T ru e _ T 2 (1 )(la _ d g ,lo _ d g ) (4 5 .4 5 5 6 , -7 2 .5 0 2 6 ) (4 5 .4 5 5 7 , -7 2 .5 0 2 1 ) 
T ru e _ T 2 (2 )(la _ d g ,lo _ d g ) (4 5 .4 5 6 9 , -7 2 .5 0 2 2 ) (4 5 .4 5 7 , -7 2 .5 0 1 7 ) 
V a v g _ T 2 (1 )(la _ d g ,lo _ d g )  
V a v g _ T 2 (2 )(la _ d g ,lo _ d g ) 

(4 5 .4 5 6 4 , -7 2 .5 0 1 3 ) 
(4 5 .4 5 6 6 , -7 2 .5 0 3 ) 

(4 5 .4 5 6 5 , -7 2 .5 0 0 8 ) 
(4 5 .4 5 6 7 , -7 2 .5 0 2 5 ) 

(r _ m a x , s _ m a x )_ T 2 (1 )(k m )  
(r _ m a x , s _ m a x )_ T 2 (2 )(k m ) 

(1 .3 6 5 5 , 0 .6 2 8 6 5 ) 
(1 .3 9 6 3 , 0 .5 9 4 9 3 ) 

(1 .3 6 5 4 , 0 .6 2 8 9 9 ) 
(1 .3 9 6 9 , 0 .5 9 5 2 1 ) 

R M S D _ T 2 (1 ,2 )(k m ) 0 .8 1 9 7 5 / 0 .9 5 3 0 6  0 .9 0 1 9 2 / 0 .9 0 1 9 3  
A R E A C E _ T 2 (1 ,2 ) (k m ^ 2 ) 2 .6 9 6 8 / 2 .6 0 9 7  2 .6 9 8 1 / 2 .6 1 2  
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Observations
• (Er_AOAi_Tj, Vavg_Tj, RMSD_Tj) are independent of P of CE.
• Higher P of CE leads to larger (r_max, s_max) (i.e. 
• AOA SDs are used for Vavg and (r_max, s_max) in the 3R fixing. 

While AOA SDs are only used for (r_max, s_max) in the 2R fixing. 
• The accuracy of Vavg and (r_max, s_max) should be higher for the 3R 

fixing with the extra information from the third RX.
• 2R AREACE is generally larger than its 3R counterpart.
• At a certain P of CE, a smaller CE indicates a more accurate estimate

of a TX’s location. Thus, with higher accuracy of Vavg, (r_max, 
s_max), and smaller AREACE, the 3R fixing can locate the TXs better 
than the 2R fixing with the tradeoff that one more RX is needed. 

• Spherical and WGS84 results are close to each other in this study.
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Some limitations

• (Stansfield): For 2R fixing, to have adequate reliability, AT1 should be 
at least 30 dgs.

• Larger AOA SD and RX-TX arc distance S lead to larger CE (i.e. 
CE (i.e. worse location estimation)=>some limitations for 
D and S.
>Bessel)
o large. A separated 2R fixing simulation to test P of CE showed that it 
at it is reliable when AOA SD < 4 dgs with (S_R1T1, S_R2T1, S_R1R2) ~ 
_R1R2) ~ (22,11,25) km.
,25) km.

JJ ψψ σσ ≈sin
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Conclusions and Future Study

• The results demonstrated the effectiveness of using both geodetic 
models to track mobile TXs in a 2R/3R fixing. 

• The 3R fixing can locate the TXs better than the 2R fixing, with the 
tradeoff being that one more RX is needed. 

• The results from Spherical and WGS84 models are close to each other. 
• Actually measured data for a 2R/3R fixing with mobile TXs will be 

used to test the capability of the algorithms in this study.
• The equations for large AOA SD without approximations will be 

derived if they are needed for measured cases.
• The cases for S longer than 50 km will be investigated.
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